
Aristo: An Augmented Reality Platform
for Immersion and Interactivity

Zhongyang Zheng, Bo Wang, Yakun Wang, Shuang Yang, Zhongqian Dong
Tianyang Yi, Cyrus Choi, Emily J. Chang, Edward Y. Chang

eyuchang@gmail.com
HTC Research, Beijing, China & San Francisco, USA

ABSTRACT
This paper introduces our augmented reality platform, Aristo, which
aims to provide users with physical feedback when interacting with
virtual objects. We use Vivepaper, a product we launched on Aristo
in 2016, to illustrate the platform’s performance requirements and
key algorithms. We specifically depict Vivepaper’s tracking and
gesture recognition algorithms, which involve several trade-offs
between speed and accuracy to achieve an immersive experience.

CCS CONCEPTS
•Human-centered computing→Mixed / augmented reality;
• Computing methodologies→ Mixed / augmented reality;

KEYWORDS
Aristo; Vivepaper; augmented reality; virtual reality;

1 INTRODUCTION
Aristo is our augmented reality platform, which allows users to in-
teract with virtual multimedia content rendered on physical objects.
For instance, a virtual book can be rendered on a piece of card stock
to allow a user to select and browse content. Virtual parts rendered
on cuboids can be overlaid on physical equipment (e.g., a wind
turbine or an engine) to train repair workers both safely and cost
effectively. In general, a physical object is turned into or overlaid
with a virtual object when viewed through a head-mounted display
(HMD) for interactivity.

The Aristo platform consists of three main components: an HMD
with a frontal camera, physical objects printed with visual fiducial
markers (e.g., Figure 1(a) shows a piece of card stock as a physical
object), and an HCI module. A user sees virtual objects on the HMD
rendered upon physical objects (e.g., Figure 1(b) shows a virtual
book rendered on the physical card stock). A user can interact with
virtual objects through natural hand gestures and eye positioning,
while physical objects provide feedback via grip function and tactile
perception.

We have implemented two applications on the Aristo platform.
The first application, Vivepaper, is a virtual book for immersive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’17, October 23–27, 2017, Mountain View, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4906-2/17/10. . . $15.00
https://doi.org/10.1145/3123266.3123308

browsing and reading. The second is a virtual workshop for training
novice workers. In this paper we focus on the Vivepaper applica-
tion. The configuration/algorithmic differences between supporting
reading and training are discussed in Section 5.

The implementation of Aristo in general, and Vivepaper specifi-
cally, faces technical challenges in three areas, which our contribu-
tions aim to address:

• Marker tracking. Vivepaper must track the fiducial markers on the
card stock both accurately and timely to perform pose (position
and orientation) estimation. We propose a marker-grid scheme
with carefully tuned configurations to achieve both high tracking
accuracy and speed.

• Gesture recognition. A user interacts with Vivepaper using hand
gestures. We take advantage of the geometry of the card stock
and its markers to achieve accurate hand segmentation and hence
effective gesture recognition.

• Real-time processing. Real-time tracking is an essential require-
ment for any augmented reality system. Our algorithms can run
comfortably above 60fps on both desktop and mobile platforms,
where a GPU is available. Note that although some markerless
tracking and gesture recognition schemes have been proposed
(including our own work [9]), their high latency (a less than 60fps
frame rate) means they are not yet production ready on current
mainstream PCs and mobile devices.

Leveraging a frontal camera, we have deployed Vivepaper with
VIVE on PC, Daydream on Android, and Cardboard on iOS to enable
an augmented reality experience. Additionally, we have created a
content generation platform, which allows third parties to compose
and upload books for users to explore. Vivepaper’s initial partners
include the vertical domains of education, training and tourism.

The remainder of this paper is organized as follows: Section 2
details related work in computer vision and articulates the con-
straints Vivepaper faces and trade-offs it makes. Section 3 depicts
our marker-based tracking algorithm. Section 4 presents an effec-
tive gesture recognition algorithm. We show our empirical study,
which facilitates the selection of several configuration parameters
to improve accuracy in both object tracking and gesture recognition.
Section 5 discusses the additional configuration/algorithmic con-
siderations required to support assembly line training, and offers
our concluding remarks.

2 RELATEDWORKS
Several key components of VR/AR systems are borrowed from
the computer vision community. We divide and discuss related
computer vision research in two areas: marker tracking and hand
segmentation.

https://doi.org/10.1145/3123266.3123308

(a) (b)

Figure 1: (a) Vivepaper’s card stock with markers (top:
back/front cover, bottom: two inner pages). (b) Augmented
reality content displayed on card stock.

2.1 Marker Tracking
Due to the difficulties in tracking general objects, using markers is
a compromise in AR for indirectly tracking objects. Markers can be
either passive or active, and they can be tracked by traditional cam-
eras, infrared cameras, or lasers. Vivepaper uses passive markers,
and they are tracked by HMD cameras.

One of the earliest and most popular visual fiducial systems is
ARToolKit [21], which uses a square tag containing a wide black
border with an image pattern inside the square. The four corners
of the square are used to estimate the pose of the square, while the
inner pattern is matched against a database of valid patterns for
identification. However, ARToolKit’s template matching method
can suffer from high false positives [14]. Many later square-based
fiducial systems use binary codes to remedy the problem of inter-
tag confusion. ARTag [13] is one example of a system that uses a
binary coding scheme to correct bit errors and improve detection
robustness. Other similar systems include ARToolkit Plus [40] and
Studierstube Tracker [41].

Apriltag [29] optimizes the previous approaches by guaranteeing
a minimum Hamming distance between a tag and its four rotations.
However, the algorithm for detecting quads (each quad represents
the black border around a tag candidate) is computationally inten-
sive for deriving image gradients, fitting segments, building lines,
and searching quads. Our experimental result (see Table 2) shows
that the frame rate is at 23fps on average running with a modern
CPU, and thus not suitable for our real-time detection requirement.
The detector has a lower false negative rate, but a relatively higher
false positive rate due to a large number of quad-candidates. (Fig-
ure 5(a) in Section 3.3 compares various schemes.)

ArUco [15] is another popular open source library used to track
visual fiducial markers. The authors focus on configurable marker
generation and occlusion resolution. For marker detection, they
use a contour-based method to speed up quad detection. Compared
to the edge-based approach used in Apriltag [29], this method may
lead to location error of quad corners, causing virtual book jitter.
Our method is based on ArUco, and we make improvements to
reduce the aforementioned error (details in Section 3).

In addition towidely used square tags, other tag encoding schemes
exist. RectTIVision [5] is based on blob detection introduced by
d-touch [12]. RUNE Tags [6] use circular dot patterns to make
up markers, but do not provide enough correspondence points to

perform pose estimation. Since Vivepaper relies on accurate pose
estimation, employing square markers is our logical choice.

While direct object tracking and markerless tracking may be
desirable, these are still very difficult tasks to accomplish in real-
time. Researchers address accuracy and speed issues [27] by provid-
ing 3D models of the tracked objects [37] or by relaxing to planar
scenes [22]. The work by Comport et al. [11] uses prior model struc-
tures of the targeted objects as search candidates. Digilog books [22]
uses SIFT feature matching followed by a RANSAC based homogra-
phy estimation to track planar targets. The work by Grinchuk et al.
[16] proposes a deep learning approach to generate and decode
visual markers, which are color images with artistic stylization. The
appearance of these methods is more “human-friendly” than regular
visual markers but suffers from being extremely highly computa-
tional intensive [16, 37]. Additionally, unavoidable object recogni-
tion errors can decrease tracking robustness [11, 22]. The Aristo
platform is designed to work with any object without prior model
information, and must support highly reliable and efficient tracking.
Therefore, the marker-based approach is our current choice.

2.2 Hand Segmentation
Hand segmentation is the first step of our gesture recognition al-
gorithm. Hand segmentation methods have been widely proposed
in literature. Different methods utilize different types of visual fea-
tures and, in some cases, a combination of them [30] to improve
segmentation accuracy. Some popular features are skin color, tex-
tures, shapes, motion, and anatomical models of the hand. The
work by Li and Kitani [23] examines a pool of widely used local
appearance features and global appearance features. The authors
propose that a sparse set of features achieves the best performance,
and global appearance models are useful for adapting changes in
illumination of hand. Baraldi et al. [4] adopts superpixel, Gabor
filters, and histograms to perform hand segmentation and utilize
a collection of random forests to deal with different illumination
conditions. Zhu et al. [48] further introduce a shape mask with
structured forests to better utilize shape information. Betancourt
et al. [7] and [8] propose a GPU-accelerated implementation and
formalize a multi-model hand-segmenter based on random forest
and Kth -nearest neighbors. These random forest-based methods
achieve state-of-the-art performance, but they require pixel-level
hand annotations for training, which requires a large amount of
labeled data.

Recently, deep convolutional neural networks (CNNs) have at-
tracted a lot of attention. Zhou et al. [47] propose a EM-like learning
framework trained iteratively with weakly supervised hand bound-
ing boxes. Ma et al. [25] train a pixel-to-pixel hand segmentation
network using raw images and binary hand masks to produce a
hand probability map. Vodopivec et al. [39] extract features with
convolutional layers and maps them directly to a segmentation
mask with a fully connected layer. Our own proposed CNN-based
image alignment scheme [9] achieves superior performance com-
pared to several state-of-the-art algorithms. Although CNN-based
methods perform well, a trained model is typically very large, and
most mobile devices and wearables are resource-strained to com-
pute fast enough to fulfill the real-time requirement of hand seg-
mentation.

Input images for hand segmentation are not limited to RGB
images. With the introduction of commodity depth cameras (e.g.
Kinect), researchers can make use of the depth information. Sinha
et al. [34] perform a large blob detection in a depth range with
median filter and depth normalization as post-processing. Kang et al.
[20] propose to use depth information with random forest, and add
bilateral filtering and decision adjustment for hand segmentation.
Liang et al. [24] train a random regression forest using depth context
features of randomly sampled pixels and fuse the information from
both color and depth. In the commercial field, the Leap Motion [1]
controller uses two monochromatic IR cameras and three infrared
LEDs to capture hand and finger motions. By using depth sensors,
the problem of changes in illumination can be partially alleviated.
However, for the current generation of depth sensors, the depth
information still contains substantial noise.

Instead of learning features from the foreground, there are meth-
ods focusing on dealing with special backgrounds. In the Visual
Panel system, Zhang et al. [45] take an arbitrary quadrangle-shaped
panel as a background and use dynamic background subtraction
to segment hands out. Garrido-Jurado et al. [15] model the back-
ground of markers by a mixture of two Gaussian and compute an
occlusion mask by color segmentation. Ha et al. [17] and Malik
et al. [26] make use of a black and white background and calculate
a histogram for setting the threshold of segmentation. In our work,
we also take advantage of a controlled background to yield higher
accuracy and faster speed.

Two design constraints compel us to use a rule-based algorithm
for Vivepaper instead of deep learning: compatibility with most
modern HMDs and support of real-time performance. Since most
HMDs are only equipped with RGB cameras, we are limited to
supporting traditional RGB images. Due to the real-time perfor-
mance requirement to support a 60fps frame rate, deep learning
based methods cannot be employed (although recent research has
revealed software and hardware methods for accelerating in the
classification stage, they are at least a year away from being de-
ployed with commercial HMDs). Moving objects (both the HMD
and card stock) and variant features (due to illumination condi-
tions, orientations, and occlusion), compounded with the 60fps
requirement, narrow our choice algorithm to a simple and effec-
tive color-based scheme. We take advantage of the geometry of
Vivepaper’s card stock and the marker matrix on it to fulfill both
the accuracy and speed requirements of Vivepaper.

Some traditional augmented reading systems (e.g., [10, 32, 38])
may require special physical edition for each book, with ARmarkers
embedded on select pages. Instead of AR markers, a markerless ap-
proach tracks images in a book (e.g., [18, 28, 33, 36]). This approach
requires designing a book with distinct images to avoid mismatch,
and a time-consuming trainingmodel for each book. Vivepaper uses
a generic card stock, which can render any book cover-to-cover,
hence offering flexibility and convenience for content selection,
delivery, and updates.

3 MARKER TRACKING
Vivepaper demands fast and accurate tracking of the card stock’s
position and orientation to render selected book content accurately
and timely on the HMD. However, both of the common open-source

tracker algorithms we evaluated (Apriltag [29] and ArUco [15]) fail
to fulfill our following requirements:
• High decoding speed. A hand-held piece of card stock can be
freely moved. In order to track this movement accurately and
timely, decoding speed must be above 60fps. Our experiment
(Section 3.3.3) showed the speed of AprilTag is 23fps.

• Low jitter error. Several factors such as signal noise and low cam-
era resolution can cause object tracking errors. Our experiment
(Section 3.3.2) showed that ArUco suffers from high jitter error.
Our proposed pipeline addresses not only the above two prob-

lems, but also the issue of occlusion. In the remainder of this section,
we first depict the steps of marker tracking and highlight our nov-
elty (Section 3.1). We then introduce the idea of a marker grid and
present an algorithm to cluster markers (Section 3.2). We report our
experiments on simulated data, which help us tune/set important
parameters to improve tracking accuracy and speed (Section 3.3).
We also report our evaluations in real environments on all trackers
we studied to demonstrate that Vivepaper employs the best tracker
to achieve a balance between accuracy and frame rate.

3.1 Tracking Process
The tracking process consists of three steps: quadrilateral (quad)
detection, marker decoding, and pose estimation. Each step involves
carefully setting parameters to achieve a good balance between
speed and accuracy for smooth content presentation.

3.1.1 Quad Detection. Vivepaper’s card stock is printed with x×
y fiducial markers (see Figure 2). As discussed in Section 2, because
we use square markers, we refer these markers as quadrilaterals
or quads. Detecting these quads is the most time-consuming step
among the three steps. Detection errors of the corners of the quads
will be propagated to the next two steps. We analyze the substeps
of the quad detector as follows:
• Pre-processing. To achieve a better detection rate of the quads
under varying illumination, for example in a slightly darker en-
vironment, we perform a white balance adjustment on each cap-
tured image. Then, we convert the image to grayscale and blur it
using a Gaussian filter. Lastly, adaptive thresholding is performed
to create good contrast between areas of different illumination
conditions. We use functions in CUDA, OpenCL, and FastCV
libraries to speed up this pre-processing step.

• Quad extraction. Next, contours are extracted using the algorithm
proposed by Suzuki et al [35]. Then, we find the convex hulls
of the contours and conduct polygonal approximation to obtain
4-vertex quads. (This substep was also employed in ArUco [15].)

• Corner refinement. Since the previous two steps often introduce
quad corner location errors, we must make the quads more reli-
able. We recompute the four corners of each quad to help improve
reliability by fitting new lines along the original lines of the quads.
This idea draws on the experience of Apriltag2 [42], an improved
version of the original Apriltag [29]. First, we sample some points
along each line, and then adjust the points to the largest gradient
of the original image. The new lines are fitted to these new points
using the least-squares algorithm and the new corners are the
intersections of the four new lines. The improved performance
can be seen from the experimental result in Figure 5(b).

3.1.2 Marker Decoding. The marker decoding step is similar
to that in Apriltag and ArUco. First the quads are transformed
perspectively. Then we use a spatially-varying threshold to decide
the value of the corresponding bit as stated in Apriltag [29], which
is robust to illumination. After getting the binary code of the quad,
we rearrange the code to its four rotations. Then, we iterate through
all the valid codes and use a Hamming distance hash table to look
up the final ID. It should be noted that sometimes there are two
quads detected with the same ID. In this case we only keep the one
with the smaller Hamming distance or larger perimeter. To speed
up this process, since the decoding process of a quad is independent
of the others, we use OpenMP to parallelize computation.

3.1.3 Pose Estimation. Once a marker has been detected, with
known camera intrinsic parameters (focal length and lens type)
and the physical size of the marker, we can use the principles
of trigonometry to compute the position and orientation of the
markers with respect to the camera.

Contrary to most augmented display systems where only the
relative position between camera and target object is available,
Vivepaper running on VIVE can obtain the world coordinate of
the virtual book using the precise camera and HMD pose. Even
when tracking occasionally fails due to variations like rapid head
movement and card stock moving out of sight, the virtual book can
still be rendered by using the last known parameters.

3.2 Marker Grid
Generally speaking, the larger the size of a marker, the easier it can
be tracked. However, since Vivepaper supports gesture recognition
above these markers, a large marker can easily be partially occluded.
Moreover, since the camera on a typical HMD has a smaller field
of view compared to that of human eyes, when the card stock is
brought near the camera, some markers on the borders can be out-
side of the field of view. Although using smaller markers can avoid
all markers being simultaneously occluded, this approach reduces
tracking accuracy because smaller markers are more susceptible to
camera noise and environmental variations.

In Vivepaper, we use a matrix grid configuration (see Figure 2)
to address the above large versus small marker dilemma. Our card
stock consists of two A4 (21cm × 29cm) folds (two pages). On this
available space, the question is then what is the required number
and size of the markers to achieve a targeted accuracy, given a
range of maker-to-camera distances and possible hand occlusion.
Section 3.3.1 reports our experiments and findings.

3.2.1 Marker Grid Pose Estimation. Instead of simply averaging
the poses of all the detected markers on a grid, the pose of the
marker grid is determined as follows. First, we cluster the detected
markers into groups based on their positions. Then, to ensure the
reliability of the final pose, we select a cluster that contains at least
half of the detected markers. Lastly, the positions of markers in
the selected cluster are averaged to estimate the virtual book’s
position. The position of the virtual book in the previous frame
is used if no candidate cluster is available. The same procedure is
applied to estimate the orientation of the virtual book. With the
calculated position and orientation, the HMD renders the content

of the virtual book on its display. Experiments in Section 3.3.1 show
the effectiveness of this method.

Tomitigatemotion jumpiness, we perform aKalman filter smooth-
ing on the pose of the virtual book. Such smoothing may make a
real, swift movement of the card stock move slower. However, since
swift movements are rare, the overall user experience is enhanced
by making pose changes smooth.

3.2.2 Marker Grid Tracking Parameters. Table 1 lists important
parameters affecting tracking accuracy. As the value range of a pa-
rameter may have physical limitations, and tradeoffs exist between
parameters (e.g., a lower resolution image requires larger markers
to achieve the same level of accuracy), we conduct an empirical
study to examine how these parameters affect tracking accuracy.

Table 1: List of parameters affecting tracking accuracy.
Category Parameters Note

Marker

Size of card stock A4 (21cm × 29cm), standard printing size.
Size and Number
of marker

Marker-grid (see Figure 2) is used to minimize
the effect of hands occlusion.

Distance and
orientation

Distance between camera and hand-held card
stock is usually 0.3m to 0.6m.

Marker type We generated an Apriltag family with 36
unique ids and min. hamming distance 9.

Camera Camera
resolution

For PC, with USB 2.0 camera (60MBps) in
60fps, the max. resolution in uncompressed
RGB channel is 612 × 460.

Noise of camera

External
Illumination
environments

Color of lighting (daylight, or fluorescent in
white or yellow color), intensity (smooth, too
strong, or too weak), reflection of card stock.

Occlusion By hands
Tracking
algorithm

See section 3.3.2 for comparison result with
Apriltag [29] and ArUco [15].

3.2.3 Marker Grid Real-time Tracking. Besides accuracy, real-
time decoding speed is an important factor in our system, since
computer-generated objects must synchronize with physical ob-
jects on the display. In Vivepaper, the real-time tracking of the card
stock’s position and orientation is achieved by our carefully tuned
marker decoding pipeline configuration. We additionally reimple-
mented some steps of the algorithm using CUDA/OpenCL/FastCV
to speed up the detection process. The performance comparison is
presented in Section 3.3.3.

3.3 Experiments
This section reports impacts of parameter choices on tracking per-
formance via empirical studies. As previewed in the previous sec-
tions, the performance factors we examined are:
• The effect of marker size and number on tracking accuracy (sec-
tion 3.3.1),

• The effect of choice of tracking algorithm on accuracy (sec-
tion 3.3.2), and

• Validation of processing speed (section 3.3.3).
We used Apriltag’s open source code [29] and the ArUco module

in OpenCV version 3.2.0 [2] to conduct empirical studies.

3.3.1 Evaluation via Simulation. In this experiment, given the
constraint of a fixed size of card stock (A4 page 21cm × 29.7cm), we
studied the trade-off between the number of markers and accuracy
of the algorithm under the combinations of different distances,

Figure 2: Marker grid (A4 size), configuration and marker
length, from left to right, 3x2 8.05cm, 4x3 5.67cm, 5x4
4.27cm, 6x4 4.06cm, 7x5 3.43cm.

occluded positions, lighting conditions, and orientations. Figure 2
shows the five marker-grid configurations we studied.

The experiment was set up as follows: A simulator written in
Unity3D [3] simulated what was captured by the frontal camera
with varying card-stock and hand positions, light conditions, and
orientations using five different configurations of the marker grid.
The simulated camera had the same intrinsic parameters as our
frontal camera (612 × 460 resolution and focal length 289.6 pixel).
Distance Study

To study the effect of different marker-grid configurations with
different distances, the simulator placed the card stock directly
facing the camera (off-axis 0 deg), and then moved away from the
camera optics axis from 0.1m to 0.8m with a step size of 0.05m (15
positions). For each position, we placed a virtual hand (the width of
palm 0.14m) up-right without rotation at 0.05m on top of the card
stock. We then moved the hand from the top of the card stock to
its bottom at 6 equidistant positions. At each of these positions, we
also moved the hand from left to right at 6 equidistant positions,
creating 36 distinct positions. For each of the 36 hand positions,
a spotlight, placed on top of the card stock z = 0.15m away, was
shined on at a random position on the card stock whose aperture
angle (the width of light) was randomly set between 50 to 100
deg. The spotlight procedure was repeated 37 times for each hand
position. The total number of simulated settings yielded 99, 900
images (5 × 15 × 36 × 37).

The images were loaded directly to our developed tracker. As
the ground-truth of the marker position was known, we computed
the average error for different marker-grid configurations for each
distance.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

E
rr

o
r(

m
)

Target distance(m)

3x2

4x3

5x4

6x4

7x5

4x3−AvgPose

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

90

100

D
e

te
c
ti
o

n
 r

a
te

(%
)(

e
rr

o
r

<
 5

%
 o

f
d

is
ta

n
c
e

)

Target distance(m)

3x2

4x3

5x4

6x4

7x5

4x3−AvgPose

(b)

Figure 3: Distance accuracy. (a) Position error vs. distance (b)
Detection rate vs. distance.

Figure 3 reports the localization accuracy and detection rate (y-
axis) of the five marker-grid configurations with respect to distance
(x-axis). Figure 3(a) reports error distance, the gap between the
ground truth position and the detected position (if the detection is
deemed successful), on the y-axis. As expected, the error increases
as the card stock moves farther away from the camera. The 3 × 2

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

E
rr

o
r(

d
e

g
re

e
s
)

Off−axis angle(degrees)

3x2

4x3

5x4

6x4

7x5

4x3−AvgPose

(a)

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

D
e

te
c
ti
o

n
 r

a
te

(%
)

Off−axis angle(degrees)

3x2

4x3

5x4

6x4

7x5

4x3−AvgPose

(b)

Figure 4: Orientation accuracy. (a) Orientation error vs. off-
axis angle (b) Detection rate vs. off-axis angle.

and 4 × 3 grids achieve the best accuracy. While Figure 3(a) shows
the error of the successfully detected cases, Figure 3(b) shows the
successful detection rate, which we define as the ratio of the error
divided by the distance (to the camera), to be within 5%. A detection
failure could result from three factors:
(1) Hand occlusion. The 3 × 2 grid suffers from the worst detection

rate due to that large markers can easily be occluded by hand.
(2) Limited field of view. When the card stock is brought near the

camera (e.g., less than 0.2m), larger markers are more suscepti-
ble to be out of sight.

(3) Distance away from camera. As grid-to-camera distance in-
creases, detection rate decreases. Markers of smaller size (5 × 4,
6 × 4 and 7 × 5) are more susceptible to longer distance.

Orientation Study
To further study the effect of the orientation, we repeated the

same procedure with a fixed target distance (0.3m), and varied
off-axis angle, 0 to 85 deg, with a step size of 5 deg.

Figure 8 reports the localization accuracy and detection rate
(y-axis) of the five marker-grid configurations with respect to ori-
entation (x-axis). The error rate grows as the marker-grid rotates
away. In terms of detection rate, the 2 × 3 grid suffers the worst
performance, while the others are more or less the same.

In both experiments, we also compared our maker-grid approach
with the average performance of tracking individual markers (the
black dash line, denoted as AvgPose in both figures). Both figures
show that Vivepaper’s marker-grid approach enjoys the best track-
ing accuracy with a 4 × 3 grid and 5.67cm marker configuration,
thus being our choice of setting.

3.3.2 Evaluation in Real Environment. Oncewe determined good
parameter settings to configure the Vivepaper marker grid, we used
real-world images to compare our tracker’s accuracy and speed
with two widely used trackers, Apriltag and ArUco. Our evaluation
was based on two factors:
(1) False positive detection rate. Although using the marker grid

configuration can reduce false negatives (thanks to redundancy),
false positives can still be problematic.

(2) Virtual-book jitter. Inaccuracy of the detected corner locations
of marker quads may lead to jitter in the virtual book in the
virtual display, degrading user experience.
We downloaded 207, 849 images from LabelMe [31] to compare

the false positive rate between our evaluated trackers. These images
are various indoor/outdoor photos containing no markers. If a
marker is detected in an image, we consider that to be a false

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
a
ls

e
 p

o
s
it
iv

e
 r

a
te

 (
%

)

Maximum bit errors corrected

Apriltag

Aruco

Vivepaper

(a)

0 0.5 1 1.5

Vivepaper2*

Vivepaper1*

Aruco*

Apriltag*

Vivepaper2

Vivepaper1

Aruco

Apriltag

Standard deviation in corner estimation (pixels)

(b)

Figure 5: (a) False positive rates tested on LabelMe [31]. (b)
Comparison of four trackers under normal condition and
suboptimal illumination conditions (*).

positive. Figure 5(a) shows that Apriltag suffers from the highest
false positive rate, while our tracker enjoys the lowest.

Virtual-book jitter is an important performance issue for Vivepa-
per. If the virtual book displayed in the virtual space keeps vibrating
even with the user holding the card stock stable, the jitter may cause
the user dizziness or discomfort. The jitter problem is due to the in-
accuracy of the detected corner locations of marker quads caused by
imperfections in digital camera capture sensors (such as Gaussian
noise and relative low resolution).

The experiment was set up by placing the same camera used by
Vivepaper in an indoor environment, at three fixed locations (0.2m,
0.4m, and 0.6m)with respect to a card stock, andwith three different
angles (0, 20, and −20 degrees). Hence, 9 videos were captured. In
addition to normal lighting conditions, this process was repeated in
suboptimal lighting conditions. We use the box plot [43] to analyze
the quad corner jitter of four methods: 1) Apriltag, 2) ArUco, 3)
Vivepaper1 (before corner refinement), and 4) Vivepaper2 (after
corner refinement).

Due to Gaussian noise and low resolution in camera sensors, the
corners detected at the quad detection stage may be slightly differ-
ent between frames. In each video, we assume all the 24 markers
(96 corners) are visible. For each corner’s coordinate we computed
the standard derivation across the 500 frames, denoted as corner
estimation error (jitter level). Ideally, this error should be zero. We
take the corner estimation error of all the corners in the 9 videos (no
more than 96×9 values), and show each tracker’s corner estimation
error under normal and suboptimal lighting conditions in a box
plot (Figure 5(b)).

In Figure 5(b), our observations are: 1) Regarding the deviation
range of lower first and upper third quartiles, ArUco’s third quartiles
is higher than those of the other methods. Apriltag is the most accu-
rate method with the lowest deviation, attributed to its complicated
method of quad detection. 2) Regarding the minimum and maxi-
mum deviation values (lower/upper ends of the whiskers), Apriltag
suffers from high false positives. Some more extreme outliers may
appear, leading to a higher deviation value than our method, which
can be seen in Figure 5(b) where the upper ends of the whiskers
of Apriltag is higher than those of our method. 3) Regarding the
median (middle band in the box), Apriltag and our method are
lower than those of the other two. Vivepaper without corner refine-
ment suffers from the highest deviations, and its jitter level under
suboptimal lighting conditions (denoted with *) worsens.

Although the median jitter level of our method is slightly higher
than Apriltag’s, it is small enough to provide good user experience.

Table 2: Average processing time (µs) on PC and Mobile.
Libraries used to speed up: * CUDA, # OpenMP, + FastCV.

Test case Sub steps AprilTag ArUco Vivepaper
(CPU only)

Vivepaper
(boosted)

PC Mobile PC Mobile PC Mobile PC Mobile

6 markers
(half page
card stock)

Quad det 29, 221 102, 597 2, 944# 34, 661 8, 810 17, 396 4, 333* 6, 950+
Decoding 191 942 514 15, 779 230 1, 349 108# 383
Pose est. 840 3, 300 727 2, 795 1, 947 3, 224 845# 197+
Total 33.1fps 9.4fps 238.9fps 18.8fps 91.0fps 45.5fps 189.2fps 132.8fps

12 markers
(one page
card stock)

Quad det 41, 627 127, 751 3, 092# 41, 134 8, 945 21, 230 4, 398* 8, 553+
Decoding 414 1, 422 599 16, 225 516 1, 727 204# 726
Pose est. 1, 735 7, 017 1, 201 6, 194 4, 604 6, 465 1, 566# 274+
Total 22.8fps 7.3fps 204.4fps 15.7fps 71.1fps 34.0fps 162.1fps 104.7fps

24 markers
(two pages
card stock)

Quad det 44, 451 124, 741 3, 759# 42, 621 9, 722 21, 419 5, 080* 7, 859+
Decoding 584 1, 618 866 22, 762 884 3, 018 347# 1, 318
Pose est. 2, 798 13, 201 1, 923 12, 635 8, 192 13, 136 2, 723# 1, 422+
Total 20.9fps 7.2fps 152.7fps 12.8fps 53.2fps 26.6fps 122.7fps 94.3fps

Consider the deviation range (lower to upper ends of whiskers).
Vivepaper’s method enjoys the smallest range and hence the most
stable. Furthermore, as we will show next that when speed is con-
sidered, our method runs much faster than Apriltag to support the
required 60fps.

3.3.3 Processing Time. For a real-time AR product, the process-
ing time is a critical factor for good user experience. The latency of
Vivepaper should be no longer than 16ms (or 60fps) or it can easily
cause discomfort for the user. This section compares Vivepaper,
Apriltag, and ArUco on their processing time in quad detection,
marker decoding, and pose estimation.

For better speed, we implemented several substeps with CUDA
on PC and FastCV on Android, as well as some parallelizable steps
on OpenMP. The same techniques are also applied to speed up the
performance of detecting hand gestures. Of the latter two systems,
Apriltag and ArUco have only open-sourced the CPU versions.

On the PC platform, our experiments were conducted on a com-
puter with an Intel(R) Core(TM) i7-3770 working at 3.40GHz, run-
ning Windows 10. The processor has four cores, each running two
threads. The DRAM size is 16GB. We took three video sequences
with different numbers of markers, 6, 12, and 24, respectively. In
general, handling more markers demands a longer processing time,
especially in the last two steps of the pipeline: marker decoding
and pose estimation. Each video sequence contains 5, 000 frames
with a resolution of 612×460 pixels taken by VIVE’s frontal camera
in a regular indoor environment. Table 2 summarizes the results.

As shown in Table 2, Apriltag suffers from theworst performance
in all test cases. ArUco and Vivepaper use a contour-based method
to detect quads, which is much faster than the edge-based method
used in Apriltag. ArUco performs even better than Vivepaper, reach-
ing 204.4fps and 162.1fps. The reason our system is slower than
ArUco is that we added some extra steps to improve accuracy as
described in Section 3.1. Nevertheless, Vivepaper is still fast enough
for a real-time AR application. The boosted version of Vivepaper
achieves more than 2× speedup compared to the original version.

On mobile, we used a state-of-the-art phone, the Google Pixel,
with a Qualcomm821 (MSM8996pro) processor and 4GB DRAM
running Android 7.1. This time, we used the phone’s camera to take
three video sequences using the same three different configurations
of markers. Each video sequence has 5, 000 frames at a resolution of
800 × 600. Table 2 presents the results. It turns out that our FastCV
version enjoys a significant performance boost (3× to 4×) over the
CPU version.

In summary, Vivepaper reaches 162fps on average on PC and
104fps on mobile, both exceeding the 60fps speed requirement of a
real-time AR system.

4 HAND GESTURES
Hand gestures are the most natural way for users to interact with
books. However, reliable hand tracking and gesture recognition is
still a very challenging problem. Vivepaper simplifies the problem
by focusing hand segmentation and gesture recognition in the phys-
ical boundary of the card stock. In its current version, Vivepaper
supports two gestures: page flipping and point-and-click. By utiliz-
ing the priorly known marker-grid background, we can achieve
reliable hand segmentation and fingertip detection, even with a
camera of 600 × 400 resolution.

4.1 Hand Segmentation
When using skin color as the visual cue for a hand, we must con-
sider various factors such as illumination, background, and camera
characteristics [19]. For an input image Ii , we use the HSV color
space to conduct skin color detection. As concluded in [19], the
transformation of RGB to HSV makes color identification more
invariant to high intensities of white light and ambient light, as
well as surface orientations relative to the light source. The HLS
representation is as effective as HSV for color identification. Vivepa-
per uses the HSV color space in the resource constrained mobile
platform, since the FastCV library provides a quick RGB to HSV
conversion API.

To better separate skin from non-skin, we use a white balancing
algorithm to pre-process image Ii . The algorithm removes color
casts caused by the light and yields I ′i . Starting from n color seeds,
we use a boundary decision method for skin color detection. We
obtain the bitwise-orMi of several binary masksmn with respect to
n different color seeds. After we have obtained the binary maskMi ,
we use post-processing rules to remove some of the false positives,
yielding M ′

i . Our post-processing takes advantage of the known
marker-grid background. Fingertip detection and localization are
subsequently performed based on the post-processed maskM ′

i .

4.1.1 Calibration. Differences in illumination and camera char-
acteristics are also issues that must be dealt with when using skin
color based methods. If a user wears a pair of gloves, the predefined
color seeds may fail to identify the correct hand regions. Vivepaper
thus performs calibration for different users under various environ-
ments beforehand. Vivepaper requests users to put their hands on
a specified region of the card stock for one second and obtains n
color seeds for hand segmentation. Once the color seeds and the
location of a hand is identified, the changes in color due to environ-
mental factors or hand movement can be subsequently captured to
calibrate color seeds dynamically.

4.1.2 Controlled Background. One of the issues for skin color
based methods is that background colors could be similar to the skin
color, causing false positives. Therefore, Vivepaper takes advantage
of a controlled background. Since the operating region of the user’s
hands in Vivepaper is within the boundary of the card stock, the
background for the hands can be limited to the black and white
markers. We take advantage of the boundary and known color of

card stock to obtain better accuracy. First, we use the boundary of
the card stock to remove regions with similar color to the user’s
skin in the background. Second, we obtain the temporal colors of
black and white for different illuminations and separate them from
the skin color maskM ′

i . We also eliminate the regions of detected
markers with the quads of markers. In addition, processing time is
reduced because we handle only the pixels within the boundary of
the card stock.

4.1.3 Empirical Validations. To validate the practicality of our
strategies, we set up a dataset, which was collected when users used
Vivepaper. This dataset contains 600 images from one male and one
female user, collected under white and yellow light. Additionally,
for each light color we collected images under three illumination
intensities: dark, normal, and bright. For each image, we manually
labeled a hand segmentation ground-truth. Since our main concern
is the hand position inside the card stock, we labeled the card stock’s
boundary in each image. We calculated both the accuracy and false
positive rate inside the boundary.

Table 3: Hand segmentation results.
Accuracy/False
Positive Rate

Calibration
Only

+ White
Balance

+ Controlled
Background

White
Light

Dark 0.98/0.02 0.99/0.01 0.99/0.01
Normal 0.99/0.01 0.99/0.00 0.99/0.00
Bright 0.99/0.01 0.99/0.01 0.99/0.01

Yellow
Light

Dark 0.92/0.07 0.95/0.03 0.95/0.01
Normal 0.64/0.40 0.88/0.13 0.94/0.06
Bright 0.92/0.09 0.91/0.08 0.93/0.06

Table 3 presents the accuracy and false positive rate of hand
segmentation in three processing stages: calibration only, with
white balancing, and with controlled background. Each stage is
conducted based on the previous one. We can see from the table
that under white light, calibration alone suffices. Under yellow light,
additional processing stages can improve segmentation accuracy.
The reason for this improvement is that when yellow light shines
on the card stock, white colored regions on the card stock can
appear to be skin color, as shown in Figure 6(c). Performing white
balancing can partially remedy this ambiguity problem, as shown
in Figure 6(d). However, there are still white colored regions on the
card stock that can be read incorrectly. A background of a similar
color to the skin can cause segmentation confusion, as shown in
Figure 6(d). When we restrict hand segmentation to be within the
boundary of the card stock, the controlled background allows us
to further improve segmentation accuracy under yellow light, as
shown in Figure 6(e).

4.2 Fingertip Detection
Accurately locating fingertips from images is critical for recognizing
the two gestures (i.e., page flipping and point-and-click) that Vivepa-
per supports. Gestures are recognized by tracking the movement
of the user’s fingertip. After hand segmentation, the binary mask
M ′
i is obtained. We regard the top two largest contours Kj (j = 0, 1)

ofM ′
i as hands. BecauseM

′
i may contain a region of the arm, the

palm center of each hand is estimated using the method in [44] to
distinguish between the hand and arm regions. As illustrated in
Figure 7(a), the center C of the largest circle inside Kj is regarded

(a) (b) (c) (d) (e) (f)

Figure 6: Comparison of segmentation results. (a) Original;
(b) Ground truth mask; (c) Segmentation with calibration;
(d) with white balancing; (e) with controlled background; (f)
Composition of the final segmentationwith the original. Ac-
curacy is calculated inside card-stock boundary.

as the palm center, and the diameter l is regarded as the length of
palm. With C and l , the bounding box B

′
j and refined contours K

′
j

of the hand is obtained by eliminating the region of the arm.

x

y

C

𝑃ℎ

ℎ𝑏𝑏

bounding box 𝐵′𝑗

𝑤𝑏𝑏

(a) (b) (c)

Figure 7: Fingertip Detection. (a) Fingertip detection with
hand’s bounding box B

′
(red), convex hull (blue), convex

points Sconvex (red points); (b) Detected fingertip Ph (pink
point); (c) Estimated fingertip (pink) in less prominent situ-
ation.

Our pointing fingertip detector is rule-based. We consider the
standard upward-pointing gesture first. Intuitively, we select the
highest convex point Ph of K ′

j as the pointing fingertip if it is
prominent enough. That is,

∀P , Ph , P ∈ Sconvex , Ph .y − P .y > hbb/5, (1)

where Sconvex denotes the set of convex points of K ′
j and hbb

denotes height of the bounding box B′
j , as Figure 7(a) illustrates.

Because Vivepaper uses only one camera, self-occlusion can
affect detection stability. While the user is performing the pointing
gesture, the pointing finger may be occluded by itself or by the
palm, due to the single camera view point (see Figure 7(c)). In this
situation, the Ph selected before becomes less prominent and the
constraint in the preceding paragraph is not satisfied. We handle
this issue by estimating the position of the fingertip based on the
historical information of Ph . Using the upward-pointing gesture as
an example, in the ith frame, the estimated fingertip P iest is located
on the top bounding edge according to Eq. 2

P iest = P ibb +r
i ∗

[
wi
bb
0

]
, r i =

{
d(P th , P

t
bb)/w

t
bb , if i − t ≤ T

0.5, otherwise,
(2)

where P th , P
t
bb , andw

t
bb denote the pointing fingertip, the top-left

corner, and the bounding box’s width respectively in the t th frame,
which is the latest frame that satisfies the constraint in Eq. 1. And
r i is equal to the ratio of the distance between P th , P

t
bb to wt

bb , if
the t th frame is in the window ofT frames preceding it, whereT is
a pre-defined parameter to limit the effective range of the historical
information.

Our usability study confirms that virtually all users can adapt
automatically to using one finger to perform page flipping and point-
and-click gestures. Most users can self-adjust to make their gestures
clearly visible to the camera to achieve effective interactions.

5 CONCLUDING REMARKS
We have deployed Aristo as an augmented reality platform to sup-
port the vertical domains of education, training, and tourism. This
paper uses one of the platform’s launched applications, Vivepaper,
as an example to illustrate our design considerations and parameter
settings in marker tracking and gesture recognition.

(a) 3D object with markers (b) Virtual object in HMD

Figure 8: Aristo in a training scenario.

In addition to the Vivepaper deployment, Aristo has also been
deployed for training novice workers. Instead of tracking a piece of
2D card stock, this training application tracks several 3D elongated
cuboids each printed with 10 different fiducial markers (Figure 8(a)).
Each cuboid is rendered into a piece of real-world equipment or
product part (an example is shown in Figure 8(b)). Since the sur-
face of each cuboid’s face is much smaller than that of the card
stock, Aristo cannot use the marker-grid scheme. To maintain high
tracking accuracy, Aristo uses recent positions of a cuboid and the
position of hand to estimate the new pose of the cuboid. Further-
more, to support the notion of “holding”, Aristo must track finger
positions on a cuboid and render their positions on the correspond-
ing virtual object to provide visual feedback. We present detailed
information on the extended version of this paper [46].

We are currently embarking on three enhancements. First, we
have been experimenting with a deep learning pipeline, CLKN [9],
to substantially enhance our tracking and segmentation subroutines.
One main goal is to trim down the final model size to support
at least 60fps on mobile phones. Second, we plan to experiment
with RGB-D cameras to enhance tracking accuracy. Finally, we
are developing prototypes with partners to integrate with a wide
variety of physical objects (e.g., piano keyboards, product parts, and
medical instruments) that can be recognized, tracked, and interacted
with by users.

REFERENCES
[1] 2017. Leap Motion. https://www.leapmotion.com. (2017).
[2] 2017. Open Source Computer Vision Library. https://github.com/opencv. (2017).
[3] 2017. Unity3D. https://unity3d.com. (2017).
[4] Lorenzo Baraldi, Francesco Paci, Giuseppe Serra, Luca Benini, and Rita Cucchiara.

2014. Gesture recognition in ego-centric videos using dense trajectories and
hand segmentation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. 688–693.

[5] Ross Bencina, Martin Kaltenbrunner, and Sergi Jorda. 2005. Improved topological
fiducial tracking in the reactivision system. In Computer Vision and Pattern
Recognition-Workshops, 2005. CVPR Workshops. IEEE Computer Society Conference
on. IEEE, 99–99.

[6] Filippo Bergamasco, Andrea Albarelli, Luca Cosmo, Emanuele Rodola, andAndrea
Torsello. 2016. An accurate and robust artificial marker based on cyclic codes.
IEEE transactions on pattern analysis and machine intelligence 38, 12 (2016), 2359–
2373.

[7] Alejandro Betancourt, Lucio Marcenaro, Emilia Barakova, Matthias Rauterberg,
and Carlo Regazzoni. 2016. GPU accelerated left/right hand-segmentation in first
person vision. In European Conference on Computer Vision. Springer, 504–517.

[8] Alejandro Betancourt, Pietro Morerio, Emilia Barakova, Lucio Marcenaro,
Matthias Rauterberg, and Carlo Regazzoni. 2017. Left/right hand segmenta-
tion in egocentric videos. Computer Vision and Image Understanding 154 (2017),
73–81.

[9] Che-Han Chang, Chun-Nan Chou, and Edward Y. Chang. 2017. CLKN: Cas-
caded Lucas-Kanade Networks for Image Alignment. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[10] Kyusung Cho, Juho Lee, JS Lee, and HS Yang. 2007. A realistic e-learning system
based on mixed reality. In 13th International Conference on Virtual Systems and
Multimedia. 57–64.

[11] Andrew I Comport, Eric Marchand, Muriel Pressigout, and Francois Chaumette.
2006. Real-time markerless tracking for augmented reality: the virtual visual
servoing framework. IEEE Transactions on visualization and computer graphics
12, 4 (2006), 615–628.

[12] Enrico Costanza and John Robinson. 2003. A Region Adjacency Tree Approach
to the Detection and Design of Fiducials. (2003).

[13] Mark Fiala. 2005. ARTag, a fiducial marker system using digital techniques. In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, Vol. 2. IEEE, 590–596.

[14] Mark Fiala. 2005. Comparing artag and artoolkit plus fiducial marker systems. In
Haptic Audio Visual Environments and their Applications, 2005. IEEE International
Workshop on. IEEE, 6–pp.

[15] S. Garrido-Jurado, R. Mu noz Salinas, F.J. Madrid-Cuevas, and M.J. Marín-Jiménez.
2014. Automatic generation and detection of highly reliable fiducial markers
under occlusion. Pattern Recognition 47, 6 (2014), 2280 – 2292. https://doi.org/10.
1016/j.patcog.2014.01.005

[16] Oleg Grinchuk, Vadim Lebedev, and Victor Lempitsky. 2016. Learnable Visual
Markers. In Advances In Neural Information Processing Systems. 4143–4151.

[17] Taejin Ha, Yeongmi Kim, Jeha Ryu, and Woontack Woo. 2006. Enhancing im-
mersiveness in AR-based product design. In Advances in Artificial Reality and
Tele-Existence. Springer, 207–216.

[18] Taejin Ha, Youngho Lee, and Woontack Woo. 2011. Digilog book for temple bell
tolling experience based on interactive augmented reality. Virtual Reality 15, 4
(2011), 295–309.

[19] Praveen Kakumanu, Sokratis Makrogiannis, and Nikolaos Bourbakis. 2007. A
survey of skin-color modeling and detection methods. Pattern recognition 40, 3
(2007), 1106–1122.

[20] Byeongkeun Kang, Kar-Han Tan, Hung-Shuo Tai, Daniel Tretter, and Truong Q
Nguyen. 2016. Hand Segmentation for Hand-Object Interaction from Depth map.
arXiv preprint arXiv:1603.02345 (2016).

[21] Hirokazu Kato and Mark Billinghurst. 1999. Marker tracking and hmd calibration
for a video-based augmented reality conferencing system. In Augmented Reality,
1999.(IWAR’99) Proceedings. 2nd IEEE and ACM International Workshop on. IEEE,
85–94.

[22] Kiyoung Kim, Vincent Lepetit, and Woontack Woo. 2010. Scalable real-time
planar targets tracking for digilog books. The Visual Computer 26, 6 (2010),
1145–1154.

[23] Cheng Li and Kris M Kitani. 2013. Pixel-level hand detection in ego-centric
videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 3570–3577.

[24] Hui Liang, Jin Wang, Qian Sun, Yong-Jin Liu, Junsong Yuan, Jun Luo, and Ying
He. 2016. Barehanded music: real-time hand interaction for virtual piano. In
Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics

and Games. ACM, 87–94.
[25] Minghuang Ma, Haoqi Fan, and Kris M Kitani. 2016. Going deeper into first-

person activity recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 1894–1903.

[26] Shahzad Malik, Chris McDonald, and Gerhard Roth. 2002. Hand tracking for
interactive pattern-based augmented reality. In Proceedings of the 1st International
Symposium on Mixed and Augmented Reality. IEEE Computer Society, 117.

[27] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler. 2016. Pose estimation
for augmented reality: a hands-on survey. IEEE transactions on visualization and
computer graphics 22, 12 (2016), 2633–2651.

[28] GeorgeMargetis, Xenophon Zabulis, Panagiotis Koutlemanis, Margherita Antona,
and Constantine Stephanidis. 2013. Augmented interactionwith physical books in
an Ambient Intelligence learning environment. Multimedia tools and applications
67, 2 (2013), 473–495.

[29] Edwin Olson. 2011. AprilTag: A robust and flexible visual fiducial system. In
Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE,
3400–3407.

[30] Siddharth S Rautaray and Anupam Agrawal. 2015. Vision based hand gesture
recognition for human computer interaction: a survey. Artificial Intelligence
Review 43, 1 (2015), 1–54.

[31] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman.
2008. LabelMe: a database and web-based tool for image annotation. International
journal of computer vision 77, 1-3 (2008), 157–173.

[32] Tomoki Issac Saso, Kenji Iguchi, and Masa Inakage. 2003. Little red: storytelling
in mixed reality. In ACM SIGGRAPH 2003 Sketches & Applications. ACM, 1–1.

[33] Camille Scherrer, Julien Pilet, Pascal Fua, and Vincent Lepetit. 2008. The haunted
book. In Proceedings of the 7th IEEE/ACM international Symposium on Mixed and
Augmented Reality. IEEE Computer Society, 163–164.

[34] Ayan Sinha, Chiho Choi, and Karthik Ramani. 2016. Deephand: Robust hand pose
estimation by completing a matrix imputed with deep features. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 4150–4158.

[35] Satoshi Suzuki et al. 1985. Topological structural analysis of digitized binary
images by border following. Computer vision, graphics, and image processing 30,
1 (1985), 32–46.

[36] Nobuko Taketa, Kenichi Hayashi, Hirokazu Kato, and Shogo Noshida. 2007.
Virtual pop-up book based on augmented reality. Human Interface and the
Management of Information. Interacting in Information Environments (2007), 475–
484.

[37] Henning Tjaden, Ulrich Schwanecke, and Elmar Schömer. 2016. Real-Time
monocular segmentation and pose tracking of multiple objects. In European
Conference on Computer Vision. Springer, 423–438.

[38] Poonsri Vate-U-Lan. 2012. An augmented reality 3d pop-up book: the develop-
ment of a multimedia project for English language teaching. In Multimedia and
Expo (ICME), 2012 IEEE International Conference on. IEEE, 890–895.

[39] Tadej Vodopivec, Vincent Lepetit, and Peter Peer. 2016. Fine Hand Segmentation
using Convolutional Neural Networks. arXiv preprint arXiv:1608.07454 (2016).

[40] Daniel Wagner and Dieter Schmalstieg. 2007. ARToolKitPlus for Pose Tracking
on Mobile Devices. In Computer Vision Winter Workshop Cvww.

[41] Daniel Wagner and Dieter Schmalstieg. 2009. Making augmented reality practical
on mobile phones, part 1. IEEE Computer Graphics and Applications 29, 3 (2009).

[42] John Wang and Edwin Olson. 2016. AprilTag 2: Efficient and robust fiducial
detection. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International
Conference on. IEEE, 4193–4198.

[43] David F Williamson, Robert A Parker, and Juliette S Kendrick. 1989. The box
plot: a simple visual method to interpret data. Annals of internal medicine 110, 11
(1989), 916–921.

[44] Zhengwei Yao, Zhigeng Pan, and Shuchang Xu. 2013. Wrist recognition and
the center of the palm estimation based on depth camera. In Virtual Reality and
Visualization (ICVRV), 2013 International Conference on. IEEE, 100–105.

[45] Zhengyou Zhang, Ying Wu, Ying Shan, and Steven Shafer. 2001. Visual panel:
virtual mouse, keyboard and 3D controller with an ordinary piece of paper. In
Proceedings of the 2001 workshop on Perceptive user interfaces. ACM, 1–8.

[46] Zhongyang Zheng, Bo Wang, Yakun Wang, Shuang Yang, Zhongqian Dong,
Tianyang Yi, Cyrus Choi, Emily Chang, and Edward Y. Chang. 2017. Aristo: An
Augmented Reality Platform for Interactivity and Immersion (extended version).
In HTC Technical Report.

[47] Yang Zhou, Bingbing Ni, Richang Hong, Xiaokang Yang, and Qi Tian. 2016. Cas-
caded interactional targeting network for egocentric video analysis. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 1904–1913.

[48] Xiaolong Zhu, Xuhui Jia, and Kwan-Yee KWong. 2014. Pixel-level hand detection
with shape-aware structured forests. In Asian Conference on Computer Vision.
Springer, 64–78.

https://www.leapmotion.com
https://github.com/opencv
https://unity3d.com
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/j.patcog.2014.01.005

	Abstract
	1 Introduction
	2 Related works
	2.1 Marker Tracking
	2.2 Hand Segmentation

	3 Marker Tracking
	3.1 Tracking Process
	3.2 Marker Grid
	3.3 Experiments

	4 Hand Gestures
	4.1 Hand Segmentation
	4.2 Fingertip Detection

	5 Concluding Remarks
	References

